Thermal protectors PTC-Thermistors

Managing Director at Thermik 1992-2001

Foundation of Mamitec GmbH
2002
Merger with Thermik in 2006
Founder and Managing Director
Ellipson Group
2003-2006
Merger with Thermik in 2011
Foundation of Hofsaess Holding in 2006
Thermik acquisition
Proprietor and sole Managing Director Thermik Group

Since 2006
Over 700 patents

Dear Customers, Dear Readers,

Giving you a grasp of Thermik's technology is one of the chief intentions of this edition. For the first time a manufacturer of temperature control units is allowing a glimpse into the innermost of its products: in detail, and yet in such simple language that engineers and businessmen alike are able to understand just what goes on exactly inside a switchgear. Why are we doing this? Well, firstly it is time that the qualitative differences became more transparent with the function also for users and secondly, so that you no longer have to decide between black box systems. In this new edition, Thermik entirely lives up to its progressive role as a market leader.

But even merely with regard to products you will find innovations which are currently unmatched by any competition. In addition to the two new products SSM and TPR from the PTC thermistor area, the SMD variation will also be presented as a new version of the existing 01 series. The latter will make it possible to assemble printed circuit boards fully automatically and without a plug connection. This is a revolution for printed circuit board assembly. And this is rounded off by a standard program that includes the widest product range of temperature control units worldwide. You can almost always find the right solution in a product range consisting of more than 20,000 articles ...

An experienced IP management and a young, forward-looking organization have created generally unsurpassed synergies to date: since inauguration of the new headquarters in 2011 we have been able to register three times as many national and international patents than in the 10 years before that! And this despite the fact that we were already leaders in this sector before. Our new, independently developed material planning system has established itself very well since 2011. A method immune from market fluctuations guaranteeing significantly shorter processes and hence more stable delivery periods in the history of the company.

Our share of customized solutions is constantly developing further too. Many renowned market leaders gain their individual market advantage over traditional products through special applications.

What we have to offer our customers and partners today is confirmed by the three most important awards we received consecutively in 2019 / 2020:

1) For the 10th time in a row, we received the top 100 innovation prize of the German medium-sized business sector, which is only conferred on the 100 most innovative companies in Germany.
2) A repeated listing in the Encyclopedia of Global Market Leaders. The prerequisite for being listed is an exclusive, uncontested market leading top position within the sector nationally and internationally. Some of our top customers can also be found here.
3) The CrefoZert of the German Creditreform, the biggest German credit rating agency, is a solvency ranking among all German companies. Those who receive it are among the 1.7 per cent of companies with the greatest economic stability, lowest default risk and best credit rating in Germany. It was awarded to Thermik for the seventh time in a row. Achieving this was not just down to us, but thanks to our customers' expectations of top quality, combined with the best possible value for money. Their lasting confidence gave and continues to give us the opportunity to match growing demands with our expertise and in addition develop expectations of our own capacities that transcend the current state-of-the-art. Allowing the best to arise out of the good. Just like what we always demand of ourselves.
4) According to the rating agency Plimsoll, our company is not only the most successful and consistent in the sector, but is in addition among the avantgarde of the most successful SMEs in Europe.

Our unceasing efforts in every area, but especially in research and development, ensure that we will also be at the innovative forefront in the future and continue to be able to guarantee maximum price stability and the lowest return rate of all providers. To ensure you remain in good hands with us.

Table of contents

History \& tradition 4
Products \& technology 6
Thermal protectors 1.6 A - 7.5 A. 8
Thermal protectors 4.0 A - 25.0 A 25
Thermal protectors 13.5 A - 42.0 A 38
Thermal protectors 25.0 A - 75.0 A 41
Thermistors. 44
Customer-specific special solutions 46
Thermik in international markets 48
Research \& development 50
Quality management 51
References 52
List of abbreviations 53
List of keywords 54
Overview of products 58

History \& tradition

Innovation means leading. It takes courage the first to invest in better ideas, better solutions, better products. This makes progress possible, and Thermik leadership has defined an industry.

Thermik Gerätebau GmbH was founded in 1968 by Peter Hofsaess, in Pforzheim, Germany. An inventor (192 patents), Hofsaess was the first to solve the problem of electrical current self-heating in bimetallic switches. From that point forward his goal was to create and build the best and most reliable thermal protectors in the world.

Since 1992, the Hofsaess family successor has systematically developed this vision and established Thermik as a world leader in its industry. Through a focus on innovation, Thermik has become the most technologically advanced and financially stable manufacturer of thermal protection products and science. Already more than 3 billion Thermik protectors are in use worldwide today.

Continuously achieving that goal, Thermik has become an internationally operating group of companies with more than 600 employees and four production sites on three continents. Thermik production facilities total more than 183,000 sqft. Today, all production plants are equipped with equivalent production lines.

Company founder Peter Hofsaess 1941 - 1992

This means the Thermik product produced at each production site is consistent. Each site can deliver each and every Thermik product. This represents optimum assurance for quality and logistics!

Thermik has year-over-year won numerous awards for innovation, and is currently one of Germany's 100 most innovative SMEs (maand is currently one of Germany's 100 most innovative SMEs (ma-
nufacturers), and one of the 75 most efficient SMEs, as named by Germany's largest and most influential auditing companies***

With good reason, many market leading manufacturers rely on Thermik exclusively for thermal protection in their products. Their designs specify Thermik, with confidence. Delivering consistently excellent product, to exacting specifications, and meeting customer's needs with the same dependability as our products, has made Thermik what it is today - the recognized market leader in a. innovation and quality in thermal protectors worldwide!

Abstract

In addition to the largest and most advanced product range on the market, Thermik today holds more patents and intellectual property rights in the field of thermal protectors than all its competitors combined! Thermik attaches enormous importance to research and development. Patent Development is a core competence for Thermik, with more than 15\% of revenue re-invested. Several new national and international product developments every year continue the historic stream of inventions.

History \& tradition

For us, this means constantly setting and achieving new goals, with our customer/partners, in a combined vision of success for the future. We know for each new day, an old idea is improved and a new one is created: Progress never rests. For Thermik, this is demonstrated by leading the way.

Products \& technology

Conventional systems in thermal protectors

Traditional, simple "bimetallic" thermal protectors have engineering functionality and reliability limitations, and can increase risks for customers wanting safety assurance in their applications/ products. The "bimetallic" commonly has a reed-switch design (Fig. 1), with a one-sided free-moving blade and welded-on switch contact. With this free movement, the contact pressure in the closed position changes, continuously varying, dependent upon the temperature. Under certain circumstances, the closed-position contact pressure may decrease critically before the open-position temperature is reached, and an arc may form (Fig. 3) due to critically high contact resistance. Switch functionality is compromised. A "bimetallic's" contacts may even weld together such that the thermal protector no longer opens, and the protective function is lost, permanently and unnoticed. This risk may go undetected, until it is too late. In this way, simple bimetallic switching systems are statistically less reliable than thermal protectors with non-current-carrying bimetallic discs.

For all "bimetallics" the reed-switch design can have high sensitivity to vibration in the vicinity of nominal switching temperatures, due to the variable contact pressure and the inevitable minimum contact pressure at the time of switching. This continuous and incremental contact pressure is compared in a force-displacement curve (Fig. 4), which also shows the movement of a snap-action spring disc thermal protector's switch action. Due to a "bimetallic's" unfavorable contact resistance conditions, increased self-heating near the rated switching temperature can actually change the protector's switch response, with the resulting switching temperature deviating from the expected environ-ment-rated temperature, in a relatively undefined manner. The "bimetallic" can go to open-position at lower actual environment temperature, causing early and increased shutdowns. Additionally, simple "bimetallics" have high contact-wear and higher levels of contact erosion, due to arcing and near-arcing, and increased/ premature switching.

Fig. 1: System examples automatically-resettable and current-sensitive opening thermal protectors: simple reed switch without additional spring disc

Fig. 2: Self-heating through current: typical behaviour of a current-intensive thermal protector with current-carrying bimetallic disc (a) compared to thermal protectors with no current-carrying bimetallic disc (b)

Fig. 3: Thermal protector without additional spring disc. Insidious contact and arc hazard ensue.

Fig. 4: Load-displacement diagram (characteristic curve):
a simple spring disc (linear curve) b spring snap disc (non-linear curve)

The Thermik system

The functionality and reliability of "bimetallic" thermal protectors can be significantly improved by the insertion of an additional spring disc (snap-action). Thermik's twin-disc design permits temperature "calibration" to be built-in to the switch. In Thermik's design, the bimetal disc is free floating in the switch, with contact pressure non-varying. Fig. 2 shows function and switching characteristics of Thermik's patented spring disc thermal protector. Fig. a) at room temperature, the spring disc (yellow) is pressing the contact with continuous force/pressure. Fig. b) before reaching the exact switching temperature, the spring disc continues to press with the same force/pressure. Fig. c) when the bimetal disc (red) opens the contact at the rated temperature, the spring disc "snaps", too, and is held down by the bimetal, pressing against it with minimal force/pressure. As temperature varies - approaching and receding from the switch temperature - the force/pressure on the contact is constant. Thermik's spring disc design has a defined non-linear force curve (Fig.4, page 6). (In Thermik's design, the bimetallic disc's force upon snapping is greater than the opposing force of the spring disc.) Because Thermik's bimetal snap-action disc is, by design, neither electrically nor mechanically stressed, the trip temperature does not drift during the switch life. Bimetallic spring discs (Fig. 3 - different Thermik product lines) are subject to less mechanical stress than non-continuously operating reed-switch discs. With less stress and higher current-carrying capacity, there is lower contact erosion and thus a higher service life.

Additionally, the increased mechanical strength and pressure stability of Thermik's switch enclosures extend the applications of our patented designs. These switch enclosure designs also have superior seal against leakage of varnishes, and are suitable for vacuum impregnation and oil-immersed applications. Thermik's switching system, with its low mass moveable contact, also minimizes contact bounce and provides shock and vibration resistance to 10 g 's.

Fig. 1: Non-welded (i.e. undamaged) centric hole discs (a) operate continuously due to an additional mechanism (b, c). If welded bimetallic discs (d) become welded, however, they work intermittently.

Improved switching performance and longer service life

Fig. 3: Auto-resetting and temperature-sensitive opening thermal protectors with additional spring snap disc (non-linear curve)

Systems with continuously operating bimetallic discs have the following characteristic advantages:

- High elastic force with a small spring deflection
- Increased work capacity
- Greater contact stability / greater contact pressure
- Better use of space thanks to circular design (miniaturization)
- Simple geometry: more mechanical strength
- Cost-effective production (uncomplicated tools)
- Longer service life
- Better long-term stability
- Reduced contact resistances
- More precise switching-point accuracy
- No premature switching
- Punctual switching-point response only at ambient temperature

Thermal protectors $1.6 \mathrm{~A}-7.5 \mathrm{~A}$

Thermal Protectors

For the following Thermik thermal protector Product Series, frequent customer-requested variations are shown to the right:

$\begin{array}{llllllll}\text { F1 } & \text { F2 } & 01 & 02 & \text { K1 } & \text { Z1 } & \text { P1 } & \text { W1 }\end{array}$

Thermik creates endless customized modifications within this Product Series, including customer-application solutions. Thermik's patented engineering in our standard configurations of this Product Series extends to all our custom solutions.

Our rigorous quality processes ensure precision-engineering consistency - in design and manufacture - plant-to-plant, worldwide - and on each order, for both standard and custom specifications.

By design, Thermik's selection of materials, and their composition, requires only the highest-quality materials enter Thermik's supply chain and are used in Thermik products. We source for quality and reliability, over price. From experience, the quality of our precision engineering products depends on it!

Due to their superior electromechanical properties, the use of precious metals is necessary for Thermik products. Thermik's Engineering Center of Excellence sources locally, within Europe, to assure our quality standards, and further assure our compliance with the international "Conflict-Free Minerals Directive" for special metals! Thermik's eco-friendly products also comply fully with EU Directives on RoHS and REACH.

Ordering instructions:

Type/Version

Tolerance [K]
Lead length [mm]

Multiple wiring - twin

 Lead length [mm]

UM1-155. 05
Type/Version

Pill

Switching temperature $\left[{ }^{\circ} \mathrm{C}\right]$
Tolerance [K]

Examples of typical applications

VDE in accordance with EN 60730

CQC in accordance with GB 14536

UL in accordance with UL 2111/UL 873 UL 60730

$\widehat{C M}$
ENEC in accordance with CMJ in accor-
CSA in accor- CB report in accordance with IEC 0730 EN 60730 dance with IEC 0730 EN 60730 dance with C22.2 dance with JET

(ϵ Thermik products are in accordance with the applicable EU directives / specifications, as amended.

陛 Tharmilis

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

$1.6 \mathrm{~A}-7.5 \mathrm{~A}$ Thermal protectors

Type series F1

(I)

Construction and function

The switch mechanism of Type F1 is comprised of five primary parts: 1) a conductive housing, 2) a steel contact cover with stationary contact, 3) a snap-action spring disc, 4) a movable contact, and 5) a bimetallic disc. The conductive housing and steel contact cover form the enclosure, to lock the self-aligning switch mechanism in place. The cover is insulated from the housing, and closes it to appear like a button cell. The snap-action spring disc is the current transfer element and bears the movable contact. It conducts the current flow and self-heating from the bimetallic disc by exercising consistent, steady contact pressure. The bimetallic disc floats within the thermal protector and the movable contact extends through the center of the bimetallic disc without being welded or riveted. When the rated switching temperature is reached, the bimetallic disc snaps into its inverted position and pushes the spring disc downwards. The contact is abruptly opened and the temperature rise of the device being protected is disrupted. If the ambient temperature then falls, the bimetallic disc snaps back into its original position, and the contact is once again closed. The thermal protector may be covered with insulation, mounted into another housing, or left uninsulated. See specifications and ranges described below.

UM1
Type: Normally closed; resets automatically; with crimped/soldered connections (incl. customer specific connections); without insulation

Nominal switching tempera increments	$\text { re (NST) in } 5^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$
Tolerance (standard)		$\pm 2.5 \mathrm{~K} / \pm 5 \mathrm{~K}$
Reverse Switch Temperature	$-35 \mathrm{~K} \pm 15 \mathrm{~K}\left(\geq 85^{\circ} \mathrm{C} \leq 180^{\circ} \mathrm{CNST}\right)$	
(defined RST is possible at		
the customer's request)	VDE	$\geq 35^{\circ} \mathrm{C}$
Installation height		from 3.3 mm
Diameter		10.2 mm
Housing length		11.5 mm
Resistance to impregnation		suitable
Suitable for installation in	tection class	I
Pressure resistance to the s	ch housing*	150 N
Standard connection		Crimp
Available approvals (please		C;VDE; UL; CQC

Operational voltage range AC	up until 500.0 V AC
Rated voltage AC	250.0V (VDE) 277.0 V (UL)
Rated current $\mathrm{AC} \cos \varphi=1.0 /$ cycles	$2.5 \mathrm{~A} / 10,000$
Rated current $\mathrm{AC} \cos \varphi=0.6 /$ cycles	$1.6 \mathrm{~A} / 10,000$
Max. switching current $\mathrm{AC} \cos \varphi=1.0 /$ cycles	$6.3 \mathrm{~A} / 3,000$
Total bounce time	$<1 \mathrm{~ms}$
Contact resistance (according to MILL-STD. R5757)	$\leq 50 \mathrm{~m} \mathrm{\Omega}$
Vibration resistance at $10 \ldots 60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

1.6 $\mathrm{A}-7.5 \mathrm{~A}$ Thermal protectors

Construction and function

The switchgear of type series F is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a contact cap which is made of steel (2) and insulated from it, and which closes the housing like a button cell. By means of a throw force a bimetallic disc (5) pushes the movable contact (4) that sticks out in the middle of it onto its circumferential collar (6) against the spring snap-in disc (3) that is also surrounding the contact (4). Due to the higher throw force of the bimetallic disc (5) the switch contact remains open against the mechanical resistance of the spring snap-in disc (3) before reaching the rated switching temperature. As such, the contact also remains open as long as the bimetallic disc - only reacting to the ambient temperature - continually works and its shape changes. The bimetallic disc (5) only snaps into its inverted position when the rated switching temperature is reached and the contact is closed by the abruptly released pressure of the spring snap-in disc (3). The spring snap-in disc (3) is now a transfer element for electric current and as such, it enables the bimetallic disc (5) to continue to work on a continuous basis. When the reset temperature is reached, the bimetallic disc snaps back into its start position and the contact is opened again.

Type series 01

Construction and function

The switchgear of type series 01 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a contact cap which is made of steel (2) and insulated from it, plus an integrated stationary silver contact (6) which closes the housing like a button cell. At the same time, the spring snap-in disc (3) which forms the current transfer element bears the movable contact (4) and discharges the flow of current and self-heating from the bimetallic disc (5) by exercising consistent, steady contact pressure. The bimetallic disc (5) is held on the one movable contact (4) which sticks out through this without having to be welded or fixed. As such, it can continually work (exposed) and only reacts to the ambient temperature in the device to be protected. When the rated switching temperature is reached, the bimetallic disc (5) snaps into its inverted position and pushes the spring snap-in disc (3) downwards. The contact is abruptly opened and the temperature rise of the device to be protected is disrupted. If the ambient temperature now falls, the bimetallic disc (5) snaps back into its start position when reaching the defined reset temperature and the contact is closed again.

1.6 A-7.5 A Thermal protectors

Thermal protectors $1.6 \mathrm{~A}-7.5 \mathrm{~A}$

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

1.6 $\mathrm{A}-7.5 \mathrm{~A}$ Thermal protectors

Type series 02

H

Construction and function

The switchgear of type series 02 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a contact cap which is made of steel (2) and insulated from it, plus an integrated stationary silver contact (6) which closes the housing like a button cell. By means of a throw force a bimetallic disc (5) pushes the movable contact (4) that sticks out in the middle of it onto its circumferential collar (6) against the spring snap-in disc (3) that is also surrounding the contact (4). Due to the higher throw force of the bimetallic disc (5) the switch contact remains open against the mechanical resistance of the spring snap-in disc (3) before reaching the rated switching temperature. As such, the contact also remains open as long as the bimetallic disc - only reacting to the ambient temperature - continually works and its shape changes. The bimetallic disc (5) only snaps into its inverted position when the rated switching temperature is reached and the contact is closed by the abruptly released pressure of the spring snapin disc (3). The spring snap-in disc (3) is now a transfer element for electric current and as such, it enables the bimetallic disc (5) to continue to work on a continuous basis. When the reset temperature is reached, the bimetallic disc snaps back into its start position and the contact is opened again.

Thermal protectors $1.6 \mathrm{~A}-7.5 \mathrm{~A}$

陛 Tharmilis

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

1.6 $\mathrm{A}-7.5 \mathrm{~A}$ Thermal protectors

Type series K1

II

Construction and function

The switchgear of type series K1 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a contact cap which is made of steel (2) and insulated from it, plus an integrated stationary silver contact (6) which closes the housing like a button cell. At the same time, the spring snap-in disc (3) which forms the current transfer element bears the movable contact (4) and discharges the flow of current and self-heating from the bimetallic disc (5) by exercising consistent, steady contact pressure. The bimetallic disc (5) is held on the one movable contact (4) which sticks out through this without having to be welded or fixed. As such, it can continually work (exposed) and only reacts to the ambient temperature in the device to be protected. In addition, between the bimetallic disc (5) and and the spring snap-in disc (3) there is an intermediate ring (7) in order, for the function itself, to stop insignificant vibration noises as a result of the oscillating bimetallic disc (5) on the spring snap-in disc (3) in applications with uncontrolled, magnetic effects. When the rated switching temperature is reached, the bimetallic disc (5) snaps into its inverted position and pushes the spring snap-in disc (3) downwards. The contact is abruptly opened and the temperature rise of the device to be protected is disrupted. If the ambient temperature now falls, the bimetallic disc (5) snaps back into its start position when reaching the defined reset temperature and the contact is closed again.

Thermal protectors $1.6 \mathrm{~A}-7.5 \mathrm{~A}$

陛 Tharmilis

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

1.6 A-7.5 A Thermal protectors

Construction and function

The switchgear of type series Z1 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a contact cap which is made of steel (2) and insulated from it, plus an integrated stationary silver contact (6) which closes the housing like a button cell. At the same time, the spring snap-in disc (3) which forms the current transfer element bears the movable contact (4) and discharges the flow of current and self-heating from the bimetallic disc (5) by exercising consistent, steady contact pressure. The bimetallic disc (5) is held on the one movable contact (4) which sticks out through this without having to be welded or fixed. As such, it can continually work (exposed). When the rated switching temperature is reached, the bimetallic disc (5) snaps into its inverted position and pushes the spring snap-in disc (3) downwards. The contact is abruptly opened and the temperature rise of the device to be protected is disrupted. If the ambient temperature now falls, the bimetallic disc (5) snaps back into its start position when reaching the defined reset temperature and the contact is closed again. As a result of the aluminium oxide-based semiconductor connected in series (7) with a defined series resistance, the switchgear is heated externally depending on the operating current and shutdown. As a result of this design, it is no longer necessary to connect the Thermal protectors to the potential heat source of the device to be protected. Such Thermal protectors are often applied equally effectively at other places in the device to be protected.

Type series P1

Construction and function

The switchgear of type series P1 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a PTC cap made from barium titanate (2) which sticks out from a stationary silver contact (6). At the same time, the spring snap-in disc (3) which forms the current transfer element bears the movable contact (4) and discharges the flow of current and self-heating from the bimetallic disc (5). The bimetallic disc (5) is held on the movable contact (4) which sticks out through this without having to be welded or fixed. When the rated switching temperature is reached, the bimetallic disc (5) snaps into its inverted position and pushes the spring snap-in disc (3) downwards. The contact is abruptly opened and the temperature rise of the device to be protected is disrupted. The PTC resistance (2) connected in parallel now sustains the operating voltage and deploys a defined electrical heating output on the bimetallic disc (5) regardless of the ambient temperature and permanently sustains it above its springback temperature so that the switch gear cannot reset. The contact remains open. The Thermal protectors can only cool down again and switch to the original closed state when the external operating voltage is no longer applied and/or disconnection from the mains.

Type: Normally closed; does not reset automatically; voltage applied; without insulation; for clip contact; minimum batch sizes

Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$ increments	$60^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$		Operating voltage range AC	from 115.0 V to 250.0 V AC
			Rated voltage AC	250.0 V (VDE) 277.0V (UL)
Tolerance (standard)		$\pm 5 \mathrm{~K}$	Rated current $\mathrm{AC} \cos \varphi=1.0$ / cycles	$2.5 \mathrm{~A} / 1,000$
Reverse switch temperature (RST) below NST	UL	$\geq 35^{\circ} \mathrm{C}$	Rated current $\mathrm{AC} \cos \varphi=0.6$ / cycles	1.6 A/1,000
(defined RST is possible at the customer's request)	VDE	$\geq 35^{\circ} \mathrm{C}$	Max. switching current $\mathrm{AC} \cos \varphi=1.0$ / cycles	10.0 A/1,000
Installation height		from 3.5 mm	Max. switching current $\mathrm{AC} \cos \varphi=0.6$ / cycles	6.3 A/1,000
Diameter		9.0 mm	Total bounce time	$<1 \mathrm{~ms}$
Suitable for installation in protection class		I	Contact resistance (according to MIL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
Standard connection		Terminal contact	Vibration resistance at $10 \ldots 60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$
Available approvals		E; UL; CSA; CQC		
(please state)				

$1.6 \mathrm{~A}-7.5 \mathrm{~A}$ Thermal protectors

Standard connection
Available approvals (please state) Lead wire $0.25 \mathrm{~mm}^{2} /$ AWG22

IEC; VDE; UL; CSA; CQC

Thermal protectors
 1.6 A-7.5 A

陛 Tharmilb

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

1.6 $\mathrm{A}-7.5 \mathrm{~A}$ Thermal protectors

Construction and function

The switchgear of type series W1 is fixed in a positive lock and is self-aligning between the floor of a conductive housing (1) and a PTC cap made from barium titanate (2) which sticks out from a stationary silver contact (6). At the same time, the spring snap-in disc (3) which forms the current transfer element bears the movable contact (4) and discharges the flow of current and self-heating from the bimetallic disc (5). The bimetallic disc (5) is held from this stuck out movable contact (4) without having to be welded or fixed. As such, it can continually work (exposed). When the rated switching temperature is reached, the bimetallic disc (5) snaps into its inverted position and pushes the spring snapin disc (3) downwards. The contact is abruptly opened and the temperature rise of the device to be protected is disrupted. As a result of the aluminium oxide-based semiconductor connected in series (7) with a defined series resistance, the switchgear his heated externally depending on the operating current and shutdown. In addition, the PTC resistance switched in parallel now sustains the operating voltage and deploys a defined electrical heating output on the bimetallic disc (5) regardless of the ambient temperature and permanently sustains it above its springback temperature so that the switchgear cannot reset back. The contact remains open. The Thermal protectors can only cool down again and switch to the original closed state when the external operating voltage is no longer applied and/or disconnection from the mains. As a result of this design, it is no longer necessary to connect the Thermal protectors to the potential heat source of the device to be protected. Such Thermal protectors are often applied equally effectively at other places in the device to be protected.

Thermal protectors $1.6 \mathrm{~A}-7.5 \mathrm{~A}$

Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$ increments	$60^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$		Operating voltage range AC	from 115.0 V to 250.0 V AC
			Rated voltage AC	250.0 V (VDE) 277.0V (UL)
Tolerance (standard)		$\pm 5 \mathrm{~K}$	Rated current $\mathrm{AC} \cos \varphi=1.0 /$ cycles	$2.5 \mathrm{~A} / 1,000$
Reverse switch temperature (RST) below NST	UL	$\geq 35^{\circ} \mathrm{C}$	Rated current $\mathrm{AC} \cos \varphi=0.6 /$ cycles	1.6 A/1,000
(defined RST is possible at the customer's request)	VDE	$\geq 35^{\circ} \mathrm{C}$	Max. switching current $\mathrm{AC} \cos \varphi=1.0$ / cycles	9.0 A/1,000
Installation height		from 5.1 mm	Total bounce time	$<1 \mathrm{~ms}$
Diameter		9.0 mm	Contactresistance (according to MLL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
Resistance to impregnation *		suitable	Vibration resistance at $10 \ldots 60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$
Series resistor for setting the current sensitivity		0.12Ω to 70.0Ω		
Suitable for installation in protection class		1		
Standard connection wi	with d	$5 \mathrm{~mm} /$ AWG22		
Available approvals (please state)		IEC;VDE		

4.0 A - 25.0 A Thermal protectors

Thermal Protectors

For the following Thermik thermal protector Product Series, frequent customer-requested variations are shown to the right:
$\begin{array}{llllllll}05 & 09 & \text { Q5 } & 06 & 08 & \text { Y6 } & \text { YH } & R 6\end{array}$

Thermik creates endless customized modifications within this Product Series, including customer-application solutions. Thermik's patented engineering in our standard configurations of this Product Series extends to all our custom solutions.

Our rigorous quality processes ensure precision-engineering consistency - in design and manufacture - plant-to-plant, worldwide - and on each order, for both standard and custom specifications.

By design, Thermik's selection of materials, and their composition, requires only the highest-quality materials enter Thermik's supply chain and are used in Thermik products. We source for quality and reliability, over price. From experience, the quality of our precision engineering products depends on it!

Due to their superior electromechanical properties, the use of precious metals is necessary for Thermik products. Thermik's Engineering Center of Excellence sources locally, within Europe, to assure our quality standards, and further assure our compliance with the international "Conflict-Free Minerals Directive" for special metals! Thermik's eco-friendly products also comply fully with EU Directives on RoHS and REACH

Ordering instructions:

Multiple wiring - twin

C05-155.05 0100/0100/0100/0100

Examples of typical applications

VDE in accor dance with EN 60730

(\in Thermik products are in accordance with the applicable EU directives / specifications, as amended.

Type series 05

Construction and function

Switchgear consisting of a movable silver contact (1), a contact bearer (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a conductive, heat-transferring housing (5) and a contact cap made of steel (6) that is insulated from it, plus a stationary countercontact (7). At the same time, the switchgear is carried by the spring snap-in disc (3) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the movable contact (1), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snap-in disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contact is abruptly opened. The temperature will now fall, the bimetallic disc (4) will only snap back upon reaching a defined reset temperature and the contact is closed again.

4.0 A - 25.0 A Thermal protectors

L05

Type: Normally closed; resets automatically; with connector cables; with epoxy; fully insulated in a screw on housing

Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$ increments		Operational voltage range AC / DC	up until 500.0 V AC / 14.0V DC
Tolerance (standard)		Rated voltage AC	250.0 V (VDE) 277.0 V (UL)
Reverse Switch Temperature (defined RST is possible at the customer's request)\quad VDE $\quad-30 \mathrm{~K} \pm 15 \mathrm{~K}(\geq$		Rated current $\mathrm{AC} \cos \varphi=1.0$ / cycles	6.3 A/10,000
		Rated current $\mathrm{AC} \cos \varphi=0.6$ / cycles	4.0 A/ 10,000
		Max. switching current $\mathrm{AC} \cos \varphi=1.0$ / cycles	10.0 A / 3,000
Housing height			20.0 A / 300
Diameter		Rated current $\mathrm{AC} \cos \varphi=0.4 /$ cycles	4.6 A/ 10,000
Thread/Length		Max. switching current $\mathrm{AC} \cos \varphi=0.4 /$ cycles	18.4 A / 1,000
Width across flats / Max. torque		Rated voltage DC	12.0 V
Resistance to impregnation *		Max. switching current DC / cycles	40.0 A/ 10,000
Suitable for installation in protection class		Max. switching current DC / cycles	60.0 A / 3,000
Pressure resistance to the switch housing *		High voltage resistance	2.0 kV
Standard connection Lead w		Total bounce time	$<1 \mathrm{~ms}$
Available approvals (please state) IEC; ENEC; VDE;		Contactresistance (according to MIL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
		Vibration resistance at $10 \ldots . .60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$

F05

Operational voltage range AC / DC	up until 500.0 V AC / 14.0V DC
Rated voltage AC	250.0 V (VDE) 277.0 V (UL)
Rated current $\mathrm{AC} \cos \varphi=1.0 /$ cycles	$6.3 \mathrm{~A} / 10,000$
Rated current $\mathrm{AC} \cos \varphi=0.6 /$ cycles	$4.0 \mathrm{~A} / 10,000$
Max. switching current $\mathrm{AC} \cos \varphi=1.0$ / cycles	$10.0 \mathrm{~A} / 3,000$
	$20.0 \mathrm{~A} / 300$
Rated current $\mathrm{AC} \cos \varphi=0.4 /$ cycles	$4.6 \mathrm{~A} / 10,000$
Max. switching current $\mathrm{AC} \cos \varphi=0.4 /$ cycles	$18.4 \mathrm{~A} / 1,000$
Rated voltage DC	12.0 V
Max. switching current DC / cycles	$40.0 \mathrm{~A} / 10,000$
Max. switching current DC / cycles	$60.0 \mathrm{~A} / 3,000$
High voltage resistance	2.0 kV
Total bounce time	$<1 \mathrm{~ms}$
Contact resistance (according to MLL-STD. R5757)	$\leq 50 \mathrm{~m} \mathrm{\Omega}$
Vibration resistance at $10 \ldots 60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$

Type series 09

Construction and function

Switchgear consisting of a movable silver contact (1), a contact bearer (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a conductive, heat-transferring housing (5) and a contact cap made of steel (6) that is insulated from it, plus a stationary countercontact (7). At the same time, the switchgear is held open by the spring snap-in disc (3) used as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the movable contact (1), can continuously work (exposed) by mechanical loads. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contact is abruptly closed. The spring snap-in disc (3) is now a transfer element for electric current and as such, it enables the bimetallic disc (5) to continue to work on a continuous basis. When the spring back temperature is reached, the bimetallic disc snaps back into its start position and the contact is opened again.

4.0 A - 25.0 A Thermal protectors

Type series 06

Construction and function

Switchgear consisting of a mobile and circular contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a non-conductive floor of a housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7) as electrodes. At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snapin disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts are abruptly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined reset temperature and the contacts will be closed again. As the contact bearing pin (2) is appropriately dimensioned, an easy, circular rotation of the circle-shaped contact bridge (1) is enabled with every switch so that transfer resistances remain constantly below the minimum limit after many switch cycles and the long term stability is sustained even under high levels of stress.

C06	1:1			Type: Normally closed; resets automatically; with connector cables; with epoxy; without insulation			
$\begin{gathered} \varepsilon \\ \underset{C}{E} \\ \underset{\sigma}{G} \end{gathered}$				Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$ increments	$70^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$	Operational voltage range AC / DC	up until 500.0 V AC / 28.0V DC
						Rated voltage AC	250.0 V (VDE) 277.0 V (UL)
				Tolerance (standard) $\pm 5 \mathrm{~K}$		Rated current $\mathrm{AC} \cos \varphi=1.0$ / cycles	10.0 A / 10,000
	震			Reverse Switch Temperature $\geq 35^{\circ} \mathrm{C}\left(\leq 95^{\circ} \mathrm{C}\right.$ NST $)$ (defined RST is possible at $-50 \mathrm{~K} \pm 15 \mathrm{~K}\left(\geq 100^{\circ} \mathrm{C} \leq 180^{\circ} \mathrm{C}\right.$ NST $)$ the customer's sequest) $-65 \mathrm{~K} \pm 15 \mathrm{~K}\left(\geq 185^{\circ} \mathrm{C} \leq 200^{\circ} \mathrm{C} \mathrm{NST}\right)$		Rated current $\mathrm{AC} \cos \varphi=0.6 /$ cycles	6.3 A/10,000
	$\frac{1}{x}$					Max. switching current $\mathrm{AC} \cos \varphi=1.0 /$ cycles	25.0 A/ 100
						Rated voltage DC	24.0 V
				VDE $\quad \geq 35^{\circ} \mathrm{C}$		Max. switching current DC/cycles	40.0 A/3,000
				Installation height from 6.3 mm		Total bounce time	$<1 \mathrm{~ms}$
				Diameter 9.0 mm		Contact resistance (according to MIL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
				Resistance to impregnation * suitable		Vibration resistance at 10 ... 60 Hz	$100 \mathrm{~m} / \mathrm{s}^{2}$
	9.0 mm	6.5 mm		Suitable for installation in protection class			
			9.0 mm	Pressure resistance to the switch housing *	600 N		
				Standard connection	Lead wire $0.75 \mathrm{~mm}^{2} /$ AWG18		
				Available approvals (please state)	IEC; ENEC; VDE; UL; CSA; CQC		

4.0 A - 25.0 A Thermal protectors

F06
 Type: Normally closed; resets automatically; with connector cables; with epoxy; fully insulated in a Nomex ${ }^{\oplus}$ cap

Type: Normally closed; resets automatically; with connector cables; silicone coated; without insulation			
Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$	$205^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}$	Operating voltage range $A C$	up until 500.0 V AC
increments		Rated voltage AC	250.0 V (VDE) 277.0V (UL)
Tolerance (standard)	$\pm 10 \mathrm{~K}$	Rated current $\mathrm{AC} \cos \varphi=1.0$ / cycles	10.0 A/1,000
Reverse switch temperature (RST) below NST	UL $\quad 120^{\circ} \mathrm{C} \pm 15 \mathrm{~K}$	Rated current $\mathrm{AC} \cos \varphi=0.6 /$ cycles	6.3 A/ 1,000
(defined RST is possible at the customer's request)	VDE $\quad \geq 35^{\circ} \mathrm{C}$	Total bounce time	$<1 \mathrm{~ms}$
Installation height	from 7.1 mm	Contactresistance (according to MIL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
Diameter	9.0 mm	Vibration resistance at $10 . . .60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$
Resistance to impregnation *	suitable		
Suitable for installation in protection class	1		
Pressure resistance to the switch housing *	600 N		
Standard connection	Lead wire $0.75 \mathrm{~mm}^{2} /$ AWG18		
Available approvals (please state)	IEC; ENEC; VDE; UL (appr. $\leq 230^{\circ}$) ; CQC		

Thermal protectors $4.0 \mathrm{~A}-25.0 \mathrm{~A}$

P06

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

4.0 A-25.0 A Thermal protectors

Type series 08

Thermal protectors
 4.0 A - 25.0 A

Type: Normally open; resets automatically; with connector cables; with epoxy; fully insulated in the attachment housing

㴈 Davinics

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

4.0 A - 25.0 A Thermal protectors

Construction and function

Switchgear consisting of a mobile and circumferential contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between the floor of a conductive housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7) as electrodes. At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snapin disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts are abruptly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined reset temperature and the contacts will be abruptly closed again. As the contact bearing pin (2) is appropriately dimensioned, an easy, circular rotation of the circle-shaped contact bridge (1) is enabled with every switch so that transfer resistances remain constantly below the minimum limit after many switch cycles and the long term stability is sustained even under high levels of stress. Through an additional outer connection to the switch housing, the Thermal protectors can be operated in a threephase arrangement. In this case the current flow is interrupted during operation through each phase.

Type series YH

Construction and function

Switchgear consisting of a mobile and circumferential contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between the floor of a conductive housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7) as electrodes. At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snapin disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts are abruptly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined reset temperature and the contacts will be abruptly closed again. As the contact bearing pin (2) is appropriately dimensioned, an easy, circular rotation of the circle-shaped contact bridge (1) is enabled with every switch so that transfer resistances remain constantly below the minimum limit after many switch cycles and the long term stability is sustained even under high levels of stress. Through an additional outer connection to the switch housing, the Thermal protectors can be operated in a threephase arrangement. In this case the current flow is interrupted during operation through each phase.

Nominal switching temperature (NST) in $5^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	Operating voltage range $A C$	up until 440.0 V AC
increments		Rated voltage AC	$3 \times 440.0 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Tolerance (standard)	$\pm 10 \mathrm{~K}$	Rated current $\mathrm{AC} \cos \varphi=1.0$ / cycles	2.5 A / 10,000
Reverse Switch Temperature UL	${ }^{\circ} \mathrm{l}$ ($95^{\circ} \mathrm{C}$ NST)	Max. switching current $\mathrm{AC} \cos \varphi=1.0$ / cycles	12.0 A / 3,000
(defined RST is possible at $\quad-50 \mathrm{~K} \pm$	($\leq 180^{\circ}$ (NST)	Total bounce time	$<1 \mathrm{~ms}$
the customer's request)		Contact resistance (according to MLL-STD. R5757)	$\leq 50 \mathrm{~m} \Omega$
Installation height	from 6.5 mm	Vibration resistance at $10 \ldots .60 \mathrm{~Hz}$	$100 \mathrm{~m} / \mathrm{s}^{2}$
Diameter	9.0 mm		
Resistance to impregnation *	suitable		
Suitable for installation in protection class	I		
Pressure resistance to the switch housing *	600 N		
Standard connection	. mm^{2} / AWG18		

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

4.0 A-25.0 A Thermal protectors

Type series R6

Construction and function

Switchgear consisting of a mobile and circumferential contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a non-conductive floor of a housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7) as electrodes. At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snapin disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts (7) are abruptly opened. The resistance ceramic (6) switched in parallel now sustains the operating voltage and deploys a defined electrical heating output on the switchgear regardless of the ambient temperature and permanently sustains it above its springback temperature so that the switchgear cannot reset back. The contacts remain open. The Thermal protectors can only cool down again and switch to the original closed state when the external operating voltage is no longer applied and/or disconnection from the mains.

Thermal protectors $13.5 \mathrm{~A}-42.0 \mathrm{~A}$

Thermal Protectors

For the following Thermik thermal protector Product Series, frequent customer-requested variations are shown to the right:

Abstract

H6 RH Thermik creates endless customized modifications within this Product Series, including customer-application solutions. Thermik's patented engineering in our standard configurations of this Product Series extends to all our custom solutions.

Our rigorous quality processes ensure precision-engineering consistency - in design and manufacture - plant-to-plant, worldwide - and on each order, for both standard and custom specifications.

By design, Thermik's selection of materials, and their composition, requires only the highest-quality materials enter Thermik's supply chain and are used in Thermik products. We source for quality and reliability, over price. From experience, the quality of our precision engineering products depends on it!

Due to their superior electromechanical properties, the use of precious metals is necessary for Thermik products. Thermik's Engineering Center of Excellence sources locally, within Europe, to assure our quality standards, and further assure our compliance with the international "Conflict-Free Minerals Directive" for special metals! Thermik's eco-friendly products also comply fully with EU Directives on RoHS and REACH.

Examples of typical applications

VDE in acco dance with EN 60730

CQC in accordance with GB 14536

UL in accordance with UL 2111/UL 873 UL 60730

${ }^{\mathbf{C M}}{ }^{j}$
CMJ in accor-
dance with
JET

㴈 Davinics

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

13,5 A - 42.0 A Thermal protectors

Construction and function

Switchgear consisting of a mobile and circular contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a non-conductive floor of a housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7). At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snap-in disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts are abrubtly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined spring back temperature and the contacts are abruptly closed again. As a result of the dimensioning of the contact bearing pin (2), an easy, circular rotation of the circle-shaped contact bridge is enabled with every switch so that transfer resistances remain constantly below the minimum limit after many switch cycles and the long term stability is sustained even under high levels of stress.

Construction and function

Switchgear consisting of a mobile and circumferential contact bridge (1), a contact bearing pin (2), a spring snap-in disc (3) and a bimetallic disc (4) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a non-conductive floor of a housing (5) and an insulating ceramic bearing (6) with two integrated stationary contacts (7). At the same time, the switchgear is supported by the spring snap-in disc (3) with the contact bridge (1) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the bimetallic disc (4) underlying it, that is also stuck out from the contact bearing pin (2), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snap-in disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contacts (7) are abruptly opened. The resistance ceramic (6) switched in parallel now sustains the operating voltage and deploys a defined electrical heating output on the switchgear regardless of the ambient temperature and permanently sustains it above its springback temperature so that the switchgear cannot reset back. The contacts (7) remain open. The Thermal protectors can only cool down again and switch to the original closed state when the external operating voltage is no longer applied and/or disconnection from the mains.

25.0 A-75.0 A Thermal protectors

Thermal Protectors

For the following Thermik thermal protector Product Series, frequent customer-requested variations are shown to the right:

H5 XO XH

Thermik creates endless customized modifications within this Product Series, including customer-application solutions. Thermik's patented engineering in our standard configurations of this Product Series extends to all our custom solutions.

Our rigorous quality processes ensure precision-engineering consistency - in design and manufacture - plant-to-plant, worldwide - and on each order, for both standard and custom specifications.

By design, Thermik's selection of materials, and their composition, requires only the highest-quality materials enter Thermik's supply chain and are used in Thermik products. We source for quality and reliability, over price. From experience, the quality of our precision engineering products depends on it!

Due to their superior electromechanical properties, the use of precious metals is necessary for Thermik products. Thermik's Engineering Center of Excellence sources locally, within Europe, to assure our quality standards, and further assure our compliance with the international "Conflict-Free Minerals Directive" for special metals! Thermik's eco-friendly products also comply fully with EU Directives on RoHS and REACH.

Ordering instructions:

Examples of typical applications

DE_{E}

VDE in accor dance with EN 60730
(CQC)
CQC in accordance with GB 14536 2111/UL 873 UL 60730

ENEC in accordance with CMJ in accor EN 60730

dance with JET

dance with dance with IEC 073 C22.2 dance with IEC 0730
(ϵ Thermik products are in accordance with the applicable EU directives/ specifications, as amended.

Type series H5

Construction and function

Switchgear consisting of a movable silver contact (1), a contact bearing pin (2), a spring snap-in disc (3), a bimetallic disc (4) and a contact tongue (5) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a conductive, heat transferring housing (6) and a contact cap (7) made of steel that is insulated from it, plus a stationary countercontact (8). At the same time, the switchgear is supported by the contact tongue (5) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the switchgear underlying it, that is also stuck out from the movable contact (1), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snap-in disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contact is abruptly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined spring back temperature and the contact is abruptly closed again.

4

桭 Darmins

The listed products are an extract from our standard range. Other versions and customised manufacturing are available upon request.

25.0 A-75.0 A Thermal protectors

Type series XO

Construction and function

Switchgear consisting of a movable silver contact (1), a contact bearing pin (2), a spring snap-in disc (3), a bimetallic disc (4) and a contact tongue (5) which is riveted into one another, undetachable and fixed in a positive lock and self-aligning between a conductive, heat transferring housing (6) and a contact cap (7) made of steel that is insulated from it, plus a stationary countercontact (8). At the same time, the switchgear is supported by the contact tongue (5) acting as a transfer element for electric current which is held between a supporting collar and a circumferential ring. As such, the switchgear underlying it, that is also stuck out from the movable contact (1), can continuously work (exposed) by mechanical loads without the contact pressure defined by the spring snap-in disc (3) diminishing. As soon as the bimetallic disc (4) reaches its rated switching temperature, it effectively springs against the throw force of the spring snap-in disc (3) into its inverted position. The contact is abruptly opened. The temperature will now fall. The bimetallic disc (4) will only snap back upon reaching a defined spring back temperature and the contact is abruptly closed again.

Type series PTC thermistors

Installation and functions

Where possible, the PTCs are to be inserted parallel to the coil. As a result, when shaping the coil ends, the mechanical stress of the PTCs is minimised. In so doing, the Mylar-Nomex ${ }^{\circ}$ shrink cap is highly suited to this purpose due to its mechanical stability (no cold flow in contrast to Teflon ${ }^{\ominus}$). In connection with the miniature pill ($\varnothing 1.9 \mathrm{~mm}$) response times of 5 to 10 seconds (max.) are achieved depending on the version.

Thermik thermistors correspond to DIN VDE 0898-1-401:2016 and/or IEC60034-11:2004 and are characterised by high resistance to temperatures. Resistance increases greatly in the range of the rated response temperature. Via a trigger device, this change can be used to shut down the load current circuit. Electronic evaluations in are also possible in different applications.

Temperature resistance diagram and main parameters in accordance with DIN VDE 0898-1-401:2016 and IEC60034-11:2004

General characteristics

Temperature resistance diagram in accordance with IEC60034-11:2004, DIN VDE 0898-1-401:2016. Advantageous values: Rated response temperature $\mathrm{T}_{\text {REF }} 60^{\circ} \mathrm{C}$ to $190^{\circ} \mathrm{C}^{*}$, in each case in increments of 10 K .

Temperature range	Resistance	Measured voltage [V_{DC}]
$-20^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {REF }}-20 \mathrm{~K}$	20Ω to 250Ω	$\leq 2,5 \mathrm{~V}$
Temperature range $90^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {REF }}-5 \mathrm{~K}$	$\leq 550 \Omega$	$\leq 2,5 \mathrm{~V}$
$\mathrm{T}_{\text {REF }}+5 \mathrm{~K}$	$\geq 1.330 \Omega$	$\leq 2,5 \mathrm{~V}$
$\mathrm{T}_{\text {REF }}+15 \mathrm{~K}$	$\geq 4.000 \Omega$	$\leq 7,5 \mathrm{~V}$ pulsed

Dielectic strength of the insulation Ueff $=2.500 \mathrm{~V}$

* These parameters relate to Tref from $90^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$. Resistance values for $T_{\text {ReF }}<90^{\circ} \mathrm{C}$ and $>160^{\circ} \mathrm{C}$ are available on request.

| STM | $1: 1$ |
| :--- | :--- | :--- | :--- |

SKM	1:1		
		With connector cables; insulation PVDF (KYNAR ${ }^{\oplus}$)	
\sum00000000000000		Insulation material	PVDF (KYNAR ${ }^{\text {® }}$)
		Response temperature	$60^{\circ} \mathrm{C}-190^{\circ} \mathrm{C}$
		Operating voltage range	$2.5 \mathrm{VDC}-24.0 \mathrm{VDC}$
		max. permissible operating voltage	30.0 V DC
		max. recommended sensor voltage	$2.5 \mathrm{VDC}-7.5 \mathrm{VDC}$
		High voltage resistance	2.5 kV
		Length of the insulation cap	12.0 mm
		Diameter	$\leq 2.5 \mathrm{~mm}$
		Available approvals (please state)	UL; CSA

胃 Hersilus

The listed products are an extract from our standard range．Other versions and customised manufacturing are available upon request．

Thermistors

SSM	$1: 1$	With connector cables；insulation Mylar ${ }^{\text {－}}$－${ }^{\text {a mex }}{ }^{\bullet}$	
\％		Insulation material	Mylar®－Nomex ${ }^{\text {® }}$
${ }^{\circ}$		Response temperature	$60^{\circ} \mathrm{C}-190^{\circ} \mathrm{C}$
\％\％		Operating voltage range	2．5VDC－24．0V DC
曾		max．permissible operating voltage	30.0 VDC
훛		max．recommended sensor voltage	2.5 V DC -7.5 VDC
${ }_{3}$		High voltage resistance	2.5 kV
3		Length of the insulation cap	16.0 mm
		Diameter	$\leq 4.0 \mathrm{~mm}$
		Available approvals（please state）	UL；CSA
回枵號	4．0．${ }_{\text {mm }}$		

PTC thermistors

Thermik＊PTC thermistors are used for temperature monitor－ ing．They are optimally designed for direct installation into the windings of electric motors and transformers．When em－ ployed with compatible circuitry（electronic assemblies，heat sinks，etc．），Thermik PTC thermistors prevent overheating of the devices in which they are installed．We offer a selection of insulation sleeves，encasements and fastener－mountings to fit your specific application．

Thermik is one of the few suppliers of PTC thermistors who have the depth and knowledge of materials from specific ex－ perience in the manufacture of PTC ceramics，having invested extensively in this technology．Thermik PTC thermistors are engineered to be superior．

Customised designs

Design K－customised－variations／additions possible upon request：
－Colour coding
－Cable insulation material or cable cross－section
－Cable－end assembly
－Connection technology
－Components used with UL－cable
－Dielectric strength of the insulation（e．g．suitable for installation in Class II applications）

Advantages

－Small dimensions＋mechanical stability
－Fast response
－Temperature－resistance characteristics tailored to the application in question

Version：ES：E－Single，S－Standard（520mm wire length）
EK：E－single，K－custom，Z－dual，D－triple，V－quad，S－sixfold

Colour－coding dependent on temperature according to DIN VDE V0898－1－401：2016 and IEC60034－11：2004

60	70	80	90	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	180	190
white	white	white	green	red	blue	brown	blue	grey	red	blue	red	white	white	black	blue	blue	blue	white	white	black
grey	brown	white	green	red	grey	brown	green	grey	green	blue	brown	blue	black	black	black	red	brown	green	red	brown

[^0]
Customised solutions

Thermik has been the direct development supplier and innovation partner for numerous high-profile market leaders for decades now. It is no surprise therefore that Thermik also has the world's largest range of customer-centric solutions for thermal protector applications in structural components.

Production plants and agencies around the world

Thermik runs an internationally oriented system of production and logistics. Four plants with over 17,000 square metres of production area and over 20 contracted warehouse distributors worldwide ensure the constant availability of our branded items. Thermik products are cheapest when purchased directly from Thermik. Expert product advice is available if required (all customer advisers are graduate engineers) in all the main languages used in international business. In addition, however, there is also the option of purchasing our products through a network of distribution centres from our authorised agents. Professional advice and excellent logistics - this is to which Thermik also attaches great importance!

Thermik in international markets

Many of our partners purchase Thermik products directly from stock. Whether it's via us or our international agents: it is the customer himself who decides. Similarly, the extent to which the customer wishes to be supported by one of our local representatives, by ourselves or by both, is also his choice.

It is important for us that can experience our customer support and service at any time and at any location you want. Through our agencies - or through us directly - you can get your stock from on-demand warehouses locally in numerous countries:

www.greenway-ltd.co.uk

www.wescap.nl

www.dacpol.eu

www.elsensor.ru

www.bevi.se

www.schupp.ch

www.nou-elec.com

www.code-tech.co.za

www.pzk.cz

wWw.emtel.com.tr

Research \& development

Thermik has patented more inventions in the past two decades and created more new products / developments / features than all thermal protection competitors combined. According to the latest Plimsoll Analysis*, Thermik is the only competitor displaying potential for future growth. Here's the reason why: We lead the industry with innovation. There is no supplier in the world with a quantitatively or qualitatively greater product range as standard, nor with more customer-specific solutions.

For the past 45 years, this continuous accomplishment has been achieved not as a goal, but as a result of our partnership model. Our endeavor to meet each customer's unique needs has been the primary driver for our new technology and new product developments. Opportunities and solutions previously unimaginable have been realized and commercialized by Thermik, for our customers.

- The round thermal protector
- The flat thermal protector
- The pressure resistant thermal protector
- The airtight thermal protector
- The current-independent thermal protector
- The temperature-sensitive thermal protector
- The defined current sensitive thermal protector
- The voltage-retaining thermal protector
- The interlocking insulation shrink cap
- The thermal protector on the band
- The high-temperature thermal protector
- The high-performance thermal protector
- The hybrid thermal protector
- The arc-free thermal protector
- More and more. .

Leadership in innovation also means superior IP management. We are the only one of the six leading manufacturers of thermal protectors to show position and potential in the Thermik patents granted for inventions and innovations.

Our patented "snap-action" spring disc mechanism is only one of the engineering innovations that sets Thermik's apart from other thermal protector designs. Continuing the legacy begun by our founder, Peter Hofsaess, who first solved the fundamental issue of electrical current self-heating in bimetallic switches, Thermik engineers have created solutions in applications across industries, including drive technology, refrigeration, wind technology, pumping, space travel, automotive, motion control, material handling, production machinery, heaters, transformers, and of course, motors. We anticipate many, many more yet to be added to our list of contributions to the industry.

Thanks to Thermik's longterm continuity (over 15 years of market leadership) in the technological and innovative aspects of thermal protectors, we were given the Top 100 award for being one of the „100 most innovative MSEs in Germany" for the 10th time in a row.

row.

Quality management

Creativity without quality is nothing. But quality always requires creativity. Leading with innovation means tried and tested methods exist to be improved. Through constructive comparison with existing products and processes, and by embracing customer's continuous requests to create new and better thermal protectors for new applications, Thermik has become an innovation leader, pioneering ideas for modern yet sustainable solutions.

Creating new products that solve new problems inevitably encourages and supports continuous improvement in all areas of manufacturing and quality assurance. Designs improve, processes improve, products improve. Rather literally, Thermik's quality driver is continuous improvement. Quality is "built-in" to everything we do. Not surprisingly, Thermik was the first thermal protector manufacturer to be certified under ISO 9001.

Many production process, tests, and QA methods are continuously refined, including thermo-selection processes, fully

automatic resistance-testing, and automated thermal selection machines. Any new processes are established and documented, and we will only begin production following 100% positive testing and quality assurance results.

Thermik's temperature "calibration" is accomplished by 100\% test-and-sort (T\&S) temperature selections. We don't calibrate the temperature at the end of production by mechanical adjustment. Like our quality mandate, it is "built-in" from the beginning. Two T\&S selections and multiple QA audits are performed to confirm temperature. Only after the final QA audit do we certify that the required switch temperature performance is BUILT-IN. Switch sub-assemblies are then individually laser etched with the temperature rating and lot number, making identification and traceability possible even decades later. Only Thermik products have this guarantee - a competitive feature for our customers, too. Finally, after certification of each assembled switch, we make each final thermal protector to customer specification with lead wires, switch insulation, additional attachments, etc.

Last but not least, all these achievements would not be possible without the people behind them. For Thermik, quality is a culture, and our people build it in.

Not everyone needs quality, but quality needs everyone to be involved. Therefore, all Thermik employees are considered to be quality employees.

"Trust is also an investment.
 Fulfilling someone's trust means profit!"

Marcel Hofsaess, CEO

Winners and partners who rely on Thermik:

Wherever innovative solutions and greater safety are sought, Thermik is the trusted partner.
The most recent awards and an explanation of them:

Once a year, Germany's hundred most innovative SMEs are determined by leading economists and entrepreneurs. This involves looking at patents and innovation management in great detail, amongst other things. The basic requirement is not only technical leadership in the sector, but also a competitive advantage spanning several years. Thermik is one of only 4 companies that have received this award 10th times in a row.
(IID) Entrepreneur des Jahres

Finalist 2011
Entrepreneur des Jahres Finalist 2012

Germany's leading accounting firm regularly nominates the 75 most efficient SMEs for its, Entrepreneur of the Year' award. Only companies who are leaders in their sector, who display good continuity, growth and economic success and who are better positioned than their competitors receive such nominations and awards.

This award is regularly given to companies belonging to the top 1.7% of all German companies in terms of the best longterm credit rating.

Search term index

List of abbreviations

A	Ampere
${ }^{\circ} \mathrm{C}$	degrees celcius
AC	alternating current
AWG	American Wire Gauge
CEO	Chief Executive Officer
CMJ	Council for Electrical \& Electronic Components
	Cent Materials of Japan
CN	power factor
cos φ	China Quality Certification Center
CQC	Canadian Standards Association
CSA	diameter
d	direct current
DC	German Institute for Standardization Patent and Trademark Office (GPTO)
DIN	European standards
DPMA	European Norms Electrical Certification
EN	Guobio, Chinese for „national standard"
ENEC	International patent classification, sector
GB	electrical engineering
H01	Hertz
Hz	International Electrotechnical Commission
JET	International Commission on the Rules for the
IEC	Approval of Electrical Equipment
JeCEE	Technology Laboratories

kV	Kilovolt
$\mathrm{m} / \mathrm{s}^{2}$	meters per square second
M4 / M6	Class of metric ISO threads
	(general application of coarse threads)
mA	Milliampere
MIL-STD. R5757	Specifications for the American Defense
	Standard
mm	Millimeter
mm^{2}	square millimeters
ms	Millisecond
$\mathrm{m} \Omega$	Milliohm
N	Newton
Nm	Newtonmeter
NST	rated switching temperature
PTC	Positive Temperature Coefficient
PTFE	Polytetrafluorethylen (also known as Teflon)
PVDF	Polyvinylidenfluoride (KYNAR®)
REACH	EU chemical regulations
RoHS	EU directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment
RST	reset temperature
UL	Underwriters Laboratories
V	Volt
VDE	Association for Electrical Technology
$\mu \mathrm{m}$	Micrometer
Ω	Ohm

Search term index

List of keywords

abruptly	$22,25,32,33,36,42,43,45,47$
ageing process	7
agencies	54, 55
air conditioning technology	56
aluminium oxide-based	21,25
ambient temperature	6, 11 13, 14, 17, 19, 22, 40, 43
applications	6, 10, 27, 41, 44
approvals	$2,8,9,10,27,45$
arc	2,6
arc-free thermal protector	56
assembly	48
automotive sector	10,50
availability	54
award-winning company	2,4,58
barium titanate	22,25
Bibliothek der Technik	7
bimetal disc	6,7
branded itemy	54
brands	10, 27, 41, 44
cable insulation material	48
can be reset mechanically	32
cap	$\begin{aligned} & 11,13,14,17,19,21,22,25,28 \\ & 30,32,45,46 \end{aligned}$
characteristic curve	50
circuit breaker	2
circular rotation	$33,36,38,39,42$
circumferential ring	$\begin{aligned} & 28,30,32,33,36,38,39,40,42, \\ & 43,45,46, \end{aligned}$
Class 13.5 A - 42 A	42-43
Class 1.6 A - 7.5 A	10-26
Class 25 A - 75 A	44-47
Class 4 A - 25 A	27-40
clip contacts	22
clip wires	14
closed state	22, 25, 40, 43
coil ends	49
collar	$\begin{aligned} & 13,17,28,30,32,33,36,38,39, \\ & 40,42,43,45,46,47 \end{aligned}$
colour coding	48
competitive advantage	10, 27, 41, 44, 58
components	50
connect	21,25
connected in series	21,25
connection pins	$22,35,37$ see product information for thermal protector
connection technology	48
connection wire	16,20
connector cables	$\begin{aligned} & 11 \mathrm{f.} ., 13,14 \mathrm{ff} ., 17 \mathrm{f} ., 19 \mathrm{f} ., 21,22 \mathrm{ff} ., \\ & \text { 25f., 28f., } 30 \mathrm{f} ., 32,33 \mathrm{ff} \text {., 36f., 40, } 42 \text {, } \\ & 43,45,46,47,49,51 \end{aligned}$

construction and function	see function description for thermal protector
constructive comparison	57
contact	see product information for thermal protector see function description for thermal protector
contact resistance	$7,33,36,38,39,42$ see product information for thermal protector
contact tongue	45,46
continuous operation	see function description for thermal protector
cover parts	10, 27, 41, 44
credit rating	2,58
crimped	12
current consumption (in air)	see product information for thermal protector
current self-heating	4,6
current sensitivity	21,25f.
current-carrying capacity	7
Customised solutions	2,52-53,56
demands	10, 27, 41, 44, 56
design	7,10, 21, 25, 27, 41, 44
development management	52
diameter	see product information for thermal protector
dielectric strength	48,49
dimensioning	36
disconnection from the mains	22, 25, 40, 43
does not reset automatically	22f., 25 f .
drive technology	56
elastic force	7
electrodes	$33,36,38,39,42$
encapsulated in a glass package	50
epoxy shell	51
EU directives	10,27, 41, 44
exposed	see function description for thermal protector
fixed	11, 14, 19, 21, 22, 25
fixing/max. torque	see product information for thermal protector
flow of current	11, 14, 18, 21, 22, 25
force curve	7
force displacement curve	6
full automation	57
fully cast	26
function parameter	7
galvanically separated	38,39
heaters	48
heating	25

Search term index

heating output	22, 25, 40, 43
hermetically sealed	50
high performance thermal protector	56
high temperature model	16
high temperature thermal protector	56
high voltage resistance	see product information for thermal protector
history \& traditon	4,5
housing	$\begin{aligned} & 11,13,22,28,30,32,33,36,38, \\ & 39,40,42,43,45,46,47 \\ & \hline \end{aligned}$
housing length	see product information for thermal protector
housing size	see product information for thermal protector
hybrid thermal protector	56
identification	57
industrial sector	50
innovation	2,56
innovation partner	52
installation and functions	49
installation height	see product information for thermal protector
installation in the windings	48
insulating ceramic bearing	33, 36, 38, 39, 42, 47
insulation cap	see product information for thermal protector
insulation material	see product information for thermal protector
insulation shrink cap	56
interlocking	see function description for thermal protector
inverted position	see function description for thermal protector
IP management	2,56
KYNAR	51
laser engraving	57
leadership in innovation and market leaders in quality	57,56
leitmotif	57
like a button cell	11, 13, 14, 17, 19, 21
litz wire length	see product information for thermal protector
load capacity	$\begin{aligned} & 7,28,30,32,33,36,38,39,40,42 \\ & 43,45,46,47,50 \end{aligned}$
load current circuit	49
long-term stability	$7,33,36,38,39,42$
lot number	57
make contact	17f., 30f., 36 f .

material	10, 27, 41, 44
max. permissible operating voltage	see product information for thermal protector
max. recommended sensor voltage	see product information for thermal protector
max. switching current AC $\cos \varphi=0.4$ /cycles	see product information for thermal protector
max. switching current $A C$ $\cos \varphi=1.0 /$ cycles	see product information for thermal protector
max. switching current DC/cycles	see product information for thermal protector
mechanical stability	48
mechanical stress	7,49
millisecond range	47
miniature pill	49
miniaturization	7
minimum limit	$33,36,38,39,42$
modification	10, 27, 41, 44
motor protection sensors	48
motors	47,50,56
Mylar-Nomex	$\begin{aligned} & 11 \mathrm{ff.}, 13,17 \mathrm{f.} \text {. 19f., 21, 22ff., 25f., 28f., } \\ & 30 \mathrm{ff}, 32,33 \mathrm{ff} ., 36 \mathrm{f} ., 38,39,40,42 \\ & 43,45,46,47 \end{aligned}$
nominal reaction temperature	49 see product information for thermal protector
normally closed	11f., 14ff., 19f., 21, 22ff., 25f., 28f., 33ff., 42, 43, 45, 46, 47
normally open	13, 17f., 30f., 36 f .
operating principle	50
operating voltage range	see product information for thermal protector
operational voltage range	22, 25, 40, 43
operational voltage range AC/DC	see product information for thermal protector
opposing force	7
ordering instructions	10, 27, 41, 44, 48, 50
outer connection	39
parametric stability	7
partner	55,58
pins	19
plug connections	12
potential heat source	21,25
power rating	47
precious metals	10,27,41,44
pressure resistance	see product information for thermal protector
product advice	54
product range	50
production	2,7,10, 27, 41, 44, 48
production plants	4,54

Search term index

productivity	2
products	48
products \& technology	6,7
profit	58
properties	10, 27, 41, 44
property rights	4, 10, 27, 41, 44, 56
protected device	11, 14, 19, 21, 22, 25, 40, 43
protection class	see product information for thermal protector
PTC	22, 25, 48
quality management	57
rated current $A C$ $\cos \varphi=0.4 /$ cycles	see product information for thermal protector
rated current $A C$ $\cos \varphi=0.6 /$ cycles	see product information for thermal protector
rated current $A C$ $\cos \varphi=1.0 /$ cycles	see product information for thermal protector
rated switching temperature	6, 7 see function description for thermal protector see product information for thermal protector
rated voltage AC	see product information for thermal protector
rated voltage DC	see product information for thermal protector
reed switch	6
references	2,58,60
reliability	4, 10, 27, 41, 44
research and development	2,56,58
reset temperature	see function description for thermal protector
resets automatically	$11 \mathrm{f}$. , 14ff., 17f., 19f., 21, 28f., 30f., 33f., 36f., 38, 39, 42, 43, 45, 46, 47
resistance	21,25
resistance ceramic bearing	40,43
resistance to impregnation	see product information for thermal protector
resistance to vibration	see product information for thermal protector
resistor	48
response time	48,50
screw on housing	20,49,51
self-aligning	see function description for thermal protector
self-heating	$6,11,14,19,21,22,25$
semi-finished	57
semiconductor	21, 25, 47
sensor resistance	see product information for thermal protector
series resistor	see product information for thermal protector

service life	7,50
shrink cap	49,56
shutdown	21,25
silicon temperature sensors	50
size	50
	see product information for
	thermal protector
space travel technology	56
specialities	10, 27, 41, 44
spring snap disc	6,7
squeezing force	32
standard connection	see product information for thermal protector
standard versions	10, 27, 41, 44
start of production	57
start position	11, 13, 14, 17, 19, 21, 30
state of the art	2, 10, 27, 41, 44
steel	$\begin{aligned} & 11,13,14,17,19,21,28,30,32 \\ & 45,46 \end{aligned}$
sustainability	57
switch	$33,36,38,39,42$
switch contact	6, 7, 13, 17
	see product information for
	thermal protector
	see function description for
	thermal protector
switch cycles	33, 36, 38, 39, 42
switched in parallel	$11,14,19,21,22,25,40,43,47,49$
switches once	32
switching mechanism	7,57
	see function description for
	thermal protector
switching point accuracy	7
switching point response	7
switching process	36,47
Teflon	49
temperature coefficient	50
	see product information for
	thermal protector
temperature load changes	57
temperature measurement	50
temperature range	see product information for
	thermal protector
temperature resistance diagram	49
temperature rise	11, 14, 19, 21, 22, 25
temperature systems	50
the company Thermik	54, 55, 57
thermal protector	$2,3,6,7,8,9,10,27,41,44,56,57$
Thermik thermistors	48,49
thermo-block processes	57
thread length	see product information for thermal protector

three pin switch	47
three-pole break contact for three phase in the star point	38,39
threephase	38,39
throw force	$\begin{aligned} & 13,17,30,33,36,39,40,43,45 \\ & 46,47 \end{aligned}$
to perform without being blocked	32
tolerance (standard)	see product information for thermal protector
total bounce time	see product information for thermal protector
traceability	57
transfer element for electric current	see function description for thermal protector
transformers	48, 50
Triac	47
trust	2,58
two part construction	see product information for thermal protector
uncontrolled magnetic effects	19
underlying technology	48
undetachable	$\begin{aligned} & 7,28,30,33,36,38,39,40,43,45, \\ & 46,47 \end{aligned}$
variants	2, 10, 27, 41, 44
vibration	6
voltage applied	22f., 25 f., 43
weight	50
width across flats/max. torque	see product information for thermal protector
wire colour	see product information for thermal protector
wires	see product information for thermal protector
zero-crossing switching	47

Thermik Gerätebau GmbH

Salzstraße 11
99706 Sondershausen
GERMANY
Tel. +49 (0) 3632 /54 12 - 0
Fax +49 (0)3632/54 1249100
www.thermik.de/en

Thermik Logistikzentrum
Am Kalkhügel 20
99706 Sondershausen
GERMANY
Tel. +49 (0) 3632 / 5412131
Fax +49 (0) 3632/54 1249131

Thermik Corporation
3304 US Highway 70 East
New Bern, NC 28560
USA
Tel. +1 (0) 2526365720
Fax +1 (0) 2526365737

Thermik Transylvania SRL Thermik Technologies sdn.
Str. Calea Surii Mari Nr. 66
557270 Sibiu
ROMANIA

Tel. +40 (0) 269230440
Fax: +40 (0) 269233637

Lot 63, Jalan Kenanga 8A
Bukit Beruntung Industrial Park
48300 Bandar Bukit Beruntung
Selangor Darul Ehsan
MALAYSIA
Tel. +60 (0) 360284889
Fax: +60 (0) 360284886

[^0]: ＊normal trade description including motor protection sensors，PTC thermistors，
 PTC sensors，PTCs，temperature sensors，etc．

